Fe doped TiO2 thin film as electron selective layer for inverted solar cells


Kosemen A., Kosemen Z. A. , Canimkubey B., Erkovan M., Basarir F., San S. E. , ...More

SOLAR ENERGY, vol.132, pp.511-517, 2016 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 132
  • Publication Date: 2016
  • Doi Number: 10.1016/j.solener.2016.03.049
  • Title of Journal : SOLAR ENERGY
  • Page Numbers: pp.511-517

Abstract

Inverted P3HT:PCBM based organic solar cells were fabricated by using Fe2+ doped TiO2 films as electron selective layer. Pure and Fe2+ doped TiO2 films were prepared by sol gel method and the optical as well as the structural properties of the thin films were characterized by UV-Vis spectrophotometer and SEM. The concentration of Fe2+ was varied as 0.5%, 1%, 2% and 3% (w/w) in TiO2 layer and the influence of Fe2+ doping on the solar cell parameters were systemically investigated. Photocurrent density of the solar cells as increased from 8.75 to 13.8 mA/cm(2), whereas the solar cell efficiency changed from 1.7% to 2.79% by using Fe2+ doped TiO2 electron selective layer. It was experimentally found and demonstrated that charge injection and selection in the TiO2 interlayer was improved by doping of Fe2+ atoms in the TiO2. (C) 2016 Elsevier Ltd. All rights reserved.