A Study on Combustion Parameters and Exhaust Characteristics in a Diesel Engine Using Alternative Fuels at Different SOI and GPP


VARGÜN M., YILMAZ İ. T., ÖZSEZEN A. N., SAYIN C.

PROCESSES, cilt.13, sa.9, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 13 Sayı: 9
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/pr13093024
  • Dergi Adı: PROCESSES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Kocaeli Üniversitesi Adresli: Evet

Özet

To encourage the use of alternative fuels while limiting the use of fossil fuels, researchers have focused on using more environmentally friendly fuels. Furthermore, the goal is to improve engine performance to increase energy efficiency. A four-stroke, single-cylinder, diesel engine with a common rail fuel injection system runs with diesel, biodiesel, and biodiesel-alcohol fuel blends. The tests were performed using a constant engine speed of 2000 rpm and three different gas pedal positions (20%, 50% and 80%). It was found that maximum cylinder gas pressure increased in all test fuels with increased gas pedal position (GPP) and advanced injection start time. In general, the maximum heat release rate increased in blended fuels compared to diesel fuel. In addition, it was seen that advanced injection timings caused an increase in ignition delay in all fuel types. In the same test conditions, it was observed that biodiesel-alcohol fuel blends caused an increase in ignition delay by more than 10% compared to diesel fuel (D100), while shortening combustion duration (CD) by more than 10%. A decreasing trend in CO and HC emissions was observed in the use of biodiesel fuel compared to diesel fuel. With the use of biodiesel-alcohol fuel blends, CO2 emissions tend to decrease. Advanced injection timings caused high NO emissions.