The effect of different compatibilizers on the properties of prepared poly(lactic acid)/polyurethane nanofibers by electrospinning


Yilmaz S. S., AYTAÇ A.

JOURNAL OF INDUSTRIAL TEXTILES, cilt.51, sa.5_SUPPL, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 51 Sayı: 5_SUPPL
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1177/15280837211029051
  • Dergi Adı: JOURNAL OF INDUSTRIAL TEXTILES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Business Source Elite, Business Source Premier, Compendex
  • Anahtar Kelimeler: Poly(lactic acid), polyurethane polymer blends, compatibilizers, PLA, PU nanofibers, electrospinning, MECHANICAL-PROPERTIES, THERMAL-STABILITY, DEGRADATION, BLENDS, POLYLACTIDE, BEHAVIOR
  • Kocaeli Üniversitesi Adresli: Evet

Özet

In this study, the poly(lactic acid) (PLA)/polyurethane (PU) nonwoven mats have been successfully fabricated by electrospinning from PLA/PU (50:50 w/w) blended solutions with/without compatibilizer. The influence of the compatibilizers which are called POSS Amic Acid Isobutyl (AAI), Tetra Silanol Phenyl POSS (TSP) and Joncryl (JO) on the characteristic properties of PLA/PU nanofibers has been investigated. The types of compatibilizer used in this paper were studied for the first time in the literature for PLA/PU blend nanofibers. The nanofibers were characterized with scanning electron microscope, fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, contact angle test, and mechanical analysis. The electrospun mat which has the smoothest fiber surfaces, thinnest fiber diameter with 812 nm and a superhydrophobic surface structure with an angle of 154 degrees was obtained by using AAI. The fabricated nanofiber by using JO has been seen having the highest strength value with 3.5 MPa and the highest crystallinity ratio with 20.1%. The highest elongation value with 51.9% was obtained for the nanofiber by using TSP. When the 5% weight loss temperature value of all PLA/PU nanofibers was compared, it was noted that the JO added nanofiber has the highest temperature durability with 292.16 degrees C. Also, the T-m value of all PLA/PU nanofibers has been resulted at about 155 degrees C like of pure PLA nanofiber. It is expected that thin and flexible biodegradable PLA/PU nanofibers with good physical and mechanical properties can be used in areas such as water repellent coating material, food packaging.