HEALTHCARE, cilt.13, sa.19, 2025 (SCI-Expanded, SSCI, Scopus)
Background: Hip fractures are common in the elderly and often require ICU admission post-surgery due to high ASA scores and comorbidities. Length of hospital stay after ICU is a crucial indicator affecting patient recovery, complication rates, and healthcare costs. This study aimed to develop and validate a machine learning-based model to predict the factors associated with extended hospital stay (>7 days from surgery to discharge) in hip fracture patients requiring postoperative ICU care. The findings could help clinicians optimize ICU bed utilization and improve patient management strategies. Methods: In this retrospective single-centre cohort study conducted in a tertiary ICU in Turkey (2017-2024), 366 ICU-admitted hip fracture patients were analysed. Conventional statistical analyses were performed using SPSS 29, including Mann-Whitney U and chi-squared tests. To identify independent predictors associated with extended hospital stay, Least Absolute Shrinkage and Selection Operator (LASSO) regression was applied for variable selection, followed by multivariate binary logistic regression analysis. In addition, machine learning models (binary logistic regression, random forest (RF), extreme gradient boosting (XGBoost) and decision tree (DT)) were trained to predict the likelihood of extended hospital stay, defined as the total number of days from the date of surgery until hospital discharge, including both ICU and subsequent ward stay. Model performance was evaluated using AUROC, F1 score, accuracy, precision, recall, and Brier score. SHAP (SHapley Additive exPlanations) values were used to interpret feature contributions in the XGBoost model. Results: The XGBoost model showed the best performance, except for precision. The XGBoost model gave an AUROC of 0.80, precision of 0.67, recall of 0.92, F1 score of 0.78, accuracy of 0.71 and Brier score of 0.18. According to SHAP analysis, time from fracture to surgery, hypoalbuminaemia and ASA score were the variables that most affected the length of stay of hospitalisation. Conclusions: The developed machine learning model successfully classified hip fracture patients into short and extended hospital stay groups following postoperative intensive care. This classification model has the potential to aid in patient flow management, resource allocation, and clinical decision support. External validation will further strengthen its applicability across different settings.