Evaluation of the antioxidative and genotoxic effects of sodium butyrate on breast cancer cells


Yüksel B., Deveci Ozkan A., Aydın D., Betts Z.

Saudi Journal of Biological Sciences, vol.29, pp.1394-1401, 2022 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 29
  • Publication Date: 2022
  • Doi Number: 10.1016/j.sjbs.2021.12.061
  • Journal Name: Saudi Journal of Biological Sciences
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, Directory of Open Access Journals
  • Page Numbers: pp.1394-1401
  • Keywords: Breast cancer, Comet assay, Sodium butyrate, Nitric oxide, HISTONE DEACETYLASE INHIBITORS, SUPEROXIDE-DISMUTASE, OXIDATIVE STRESS, DNA-DAMAGE, MOLECULAR-MECHANISMS, COMET ASSAY, MALONDIALDEHYDE, GLUTATHIONE, PROGRESSION, MARKERS
  • Kocaeli University Affiliated: Yes

Abstract

© 2021Oncogenic stimulation shows a rise in reactive oxygen species (ROS), and ROS can eventually induce carcinogenesis by causing DNA damage. In this context, this study aims to evaluate some biochemical and genotoxic changes in the control of cell death caused by NaBu (Sodium butyrate). treatment in breast cancer cells. NaBu's impact on cell proliferation was determined via WST-1 assay. The lipid peroxidation (MDA), reduced glutathione (GSH), Nitric Oxide (NO), hydrogen peroxide (H2O2), and superoxide dismutase (SOD) enzyme levels were determined biochemically. NaBu-induced genotoxic damage was estimated via single-cell gel electrophoresis (SCGE). NaBu reduced cell viability and potentially induced GSH, but decreased SOD enzyme activity and the level of MDA and NO decreased also H2O2 decreased at different times and NaBu concentrations. Higher NaBu concentrations amplified DNA damage in MCF-7 cells compared to the control group. NaBu shows anticancer and genotoxic effects, especially through antioxidant enzymes, one of the oxidative stress parameters in breast cancer. However, the anticancer and genotoxic effects of NaBu is changed in the oxidative stress parameters with time and treatment concentration of NaBu in MCF-7 cells. Furthermore, his oxidative stress-dependent effect changes need to be clarified by further evaluation with molecular and more biochemical parameters.