BOUNDARY VALUE PROBLEMS, cilt.2025, sa.1, 2025 (SCI-Expanded)
This paper develops a novel Milne inequality for third-differentiable and h-convex functions using Riemann integrals. Furthermore, new Milne inequalities are proposed utilizing a summation parameter p >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\geq 1$\end{document} for s-convexity, convexity, and P-functions class. We examine cases when the third derivative functions are also bounded and Lipschitzian.