Role of fibroblast growth factor receptor signaling in prostate cancer cell survival


Ozen M. , Giri D., Ropiquet F., Mansukhani A., Ittmann M.

JOURNAL OF THE NATIONAL CANCER INSTITUTE, vol.93, no.23, pp.1783-1790, 2001 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 93 Issue: 23
  • Publication Date: 2001
  • Doi Number: 10.1093/jnci/93.23.1783
  • Title of Journal : JOURNAL OF THE NATIONAL CANCER INSTITUTE
  • Page Numbers: pp.1783-1790

Abstract

Background: Expression of fibroblast growth factors (FGFs) is increased in a substantial fraction of human prostate cancers in vivo and in prostate cancer cell lines. Altered FGF signaling can potentially have a variety of effects, including stimulating cell proliferation and inhibiting cell death. To determine the biologic significance of altered FGF signaling in human prostate cancer, we disrupted signaling by expression of a dominant-negative (DN) FGF receptor in prostate cancer cell lines. Methods: PC-3, LNCaP, and DU145 prostate cancer cells were stably transfected with DN FGFR constructs, and LNCaP and DU145 cells were infected with a recombinant adenovirus expressing DN FGFR-1. The effect of DN FGFR-1 expression was assessed by colony-formation assays, cell proliferation assays, flow cytometry, and cytogenetic analysis. Key regulators involved in the G(2)-to-M cell cycle transition were assessed by western blotting to examine cyclin B1 expression and by in vitro kinase assay to assess cdc2 kinase activity. Results: Stable transfection of the DN FGFR-1 construct inhibited colony formation by more than 99% in all three cell lines. Infection of LNCaP and DU145 prostate cancer cells with adenovirus expressing DN FGFR-1 led to extensive cell death within 48 hours. Flow cytometry and cytogenetic analysis revealed that the DN FGFR-1 receptor led to arrest in the G(2) phase of the cell cycle before cell death. Cyclin B1 accumulated in DN FGFR-1-infected LNCaP cells, but cdc2 kinase activity was decreased. Conclusions: These findings reveal an unexpected dependence of prostate cancer cells on FGF receptor signal transduction to traverse the G(2)/M checkpoint. The mechanism for the G(2) arrest is not clear. Our results raise the possibility that FGF-signaling antagonists might enhance the cell death induced by other prostate cancer therapies.