ECOLOGICAL MODELLING, cilt.457, 2021 (SCI-Expanded)
Covid-19 pandemic lock-down has resulted significant differences in air quality levels all over the world. In contrary to decrease seen in primary pollutant species, many of the countries have experienced elevated ground-level ozone levels in this period. Air pollution forecast gains more importance to achieve air quality management and take measures against the risks under such extra-ordinary conditions. Statistical models are indispensable tools for predicting air pollution levels. Considering the complex photochemical reactions involved in tropospheric ozone formation, modeling this pollutant requires efficient non-linear approaches. In this study, deep learning methods were applied to forecast hourly ozone levels during pandemic lock-down for an industrialized region in Turkey. With this aim, different deep learning methods were tested and efficiencies of the models were compared considering the calculated RMSE, MAE, R-2 and loss values.