A comprehensive analysis of Riemann-Liouville fractional multiplicative integral inequalities


Eddahbi M., LAKHDARI A., Meftah B., McHiri L., Rhaima M.

AIMS Mathematics, cilt.10, sa.11, ss.25227-25252, 2025 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 10 Sayı: 11
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3934/math.20251117
  • Dergi Adı: AIMS Mathematics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Directory of Open Access Journals
  • Sayfa Sayıları: ss.25227-25252
  • Anahtar Kelimeler: fractional calculus, multiplicative (s, P)-convex functions, multiplicative calculus, Newton-Cotes-type inequalities
  • Kocaeli Üniversitesi Adresli: Evet

Özet

In this article, we explored a comprehensive class of quadrature formulas characterized by a bi-parametric expression via the concept of multiplicative (s, P)-convexity. Inspired by prior works in this field, we investigated formulas with varying points (ranging from 1 to 4) and established associated fractional multiplicative inequalities for functions whose multiplicative first-order derivatives exhibit multiplicative (s, P)-convexity.