Inverse coefficient problems for elliptic variational inequalities with a nonlinear monotone operator

Hasanov A.

INVERSE PROBLEMS, cilt.14, ss.1151-1169, 1998 (SCI İndekslerine Giren Dergi) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Konu: 5
  • Basım Tarihi: 1998
  • Doi Numarası: 10.1088/0266-5611/14/5/005
  • Sayfa Sayıları: ss.1151-1169


The class of inverse problems for a nonlinear elliptic variational inequality is considered. The nonlinear elliptic operator is assumed to be a monotone potential. The unknown coefficient of the operator depends on the gradient of the solution and belongs to a set of admissible coefficients which is compact in H-1(0, xi*). It is shown that the nonlinear operator is pseudomonotone for the given class of coefficients. For the corresponding direct problem H-1- coefficient convergence is proved. Based on this result the existence of a quasisolution of the inverse problem is obtained. As an important application an inverse diagnostic problem for an axially symmetric elasto-plastic body is considered. For this problem the numerical method and computational results are also presented.