Equivalent electrical model for a proton exchange membrane (PEM) electrolyser

ATLAM Ö., Kolhe M.

ENERGY CONVERSION AND MANAGEMENT, vol.52, pp.2952-2957, 2011 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 52
  • Publication Date: 2011
  • Doi Number: 10.1016/j.enconman.2011.04.007
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.2952-2957
  • Keywords: Proton exchange membrane (PEM) electrolyser, Electrolytic hydrogen, Energy storage in the form of electrolytic hydrogen, ENERGY SYSTEM, HYDROGEN
  • Kocaeli University Affiliated: Yes


In this work, an electrical equivalent model for a proton exchange membrane (PEM) electrolyser has been developed. Through experimental analysis, the input current-voltage (I-V) characteristic for a single PEM electrolyser cell has been modelled under steady-state conditions. It has been developed by using electrical equivalent circuit topology in which the useful power conversion and losses have been taken into account. Electrolytic hydrogen production rates of PEM electrolyser cell have been calculated with respect to the input current and power. The developed model has been tested with experiments results at the nominal operating temperature. The experimental results have been verified with the developed model results and the relative errors between them are around 1-2%. It has been observed that the electrolytic hydrogen production rate increases with the input current in a linear fashion. But the variation of electrolytic hydrogen production rate with the input electrical power is non-linear (i.e. logarithmic). These characteristics are verified by using the developed electrical equivalent model of PEM electrolyser cell. The parameters of the developed model can also be defined by taking into account of temperature and pressure effects. The equivalent electrical model of PEM electrolyser is very useful for analysing the electrical energy system behaviour in which the energy is stored in the form of electrolytic hydrogen. (C) 2011 Elsevier Ltd. All rights reserved.