FRACTAL AND FRACTIONAL, cilt.7, sa.8, 2023 (SCI-Expanded)
This work establishes some new inequalities to find error bounds for Maclaurin's formulas in the framework of q-calculus. For this, we first prove an integral identity involving q-integral and q-derivative. Then, we use this new identity to prove some q-integral inequalities for q-differentiable convex functions. The inequalities proved here are very important in the literature because, with their help, we can find error bounds for Maclaurin's formula in both q and classical calculus.