JOURNAL OF APPLIED ENTOMOLOGY, cilt.135, sa.3, ss.225-236, 2011 (SCI-Expanded)
In parasitoid species devoid of polydnaviruses and virus-like particles, venom appears to play a major role in suppression of host immunity. Venom from the pupal endoparasitoid Pimpla turionellae L. (Hymenoptera: Ichneumonidae) has previously been shown to contain a mixture of biologically active components, which display potent paralytic, cytotoxic, and cytolytic effects toward lepidopteran and dipteran hosts. The current study was undertaken to investigate if parasitism and/or envenomation by P. turionellae affects the frequency of apoptotic and necrotic hemocytes, hemocyte viability and mitotic indices in Galleria mellonella L. (Lepidoptera: Pyralidae) pupae and larvae. Our study indicates that parasitism and experimental envenomation of G. mellonella by P. turionellae resulted in markedly different effects on the ratio of apoptotic hemocytes circulating in hemolymph depending on the host developmental stages. The ratio of early and late apoptotic hemocytes increased in G. mellonella pupae and larvae upon parasitization and at high doses of venom when compared to untreated, null and Phosphate Buffered Saline (PBS) injected controls. In contrast, an increase in necrotic hemocytes was only observed in parasitized pupae at 24 h and no difference was observed in larvae. The lowest hemocyte viability values were observed with pupae as 69.87%, 69.80%, and 72.47% at 4, 8, and 24 h post-parasitism. The ratio of mitotic hemocytes also decreased in pupae and larvae upon parasitization and at high doses of venom. Staining of hemocytes with annexin V-FITC revealed green fluorescent 'halos' along the plasma membranes of venom treated cells within 15 min following exposure to venom. By 1 h post-venom - treatment, the majority of hemocytes displayed binding of this probe, indicative of early stage apoptosis. These same hemocytes also displayed a loss of plasma membrane integrity at the same time points as evidenced by accumulation of propidium iodide in nuclei.