Investigation of SARS-CoV-2 Variants and Their Effect on SARS-CoV-2 Monoclonal Antibodies, Convalescent and Vaccine Plasma by a NovelWeb Tool


Creative Commons License

Arikan A., SAYAN M.

DIAGNOSTICS, cilt.12, sa.11, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 11
  • Basım Tarihi: 2022
  • Doi Numarası: 10.3390/diagnostics12112869
  • Dergi Adı: DIAGNOSTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, EMBASE, INSPEC, Directory of Open Access Journals
  • Anahtar Kelimeler: SARS-CoV-2 variant, therapeutic, vaccine, bioinformatics
  • Kocaeli Üniversitesi Adresli: Evet

Özet

(1) Background: SARS-CoV-2 variants possess specific mutations throughout their genome; however, the effect of these mutations on pathogenesis is little known. The study aimed to identify SARS-CoV-2 variants and their susceptibility rate against monoclonal antibodies, convalescent, and vaccine plasma. (2) Methods: Strains isolated from COVID-19 cases in Turkey in April and September 2021 were involved. Illuma Nextera XT was processed for NGS, followed by virtual phenotyping (Coronavirus Antiviral and Resistance Database (CoV-RDB) by Stanford University). (3) Results: Among 211 strains, 79% were SARS-CoV-2 variants. B.1.1.7 (Alpha) was the most dominant, followed by B.1.617.2 (Delta), B.1.351 (Beta), and B.1.525 (Eta). Alpha and Delta were less susceptible to Etesevimab-Sotrovimab and Bamlanivimab-Etesevimab, respectively. Reduced efficacy was observed for convalescent plasma in Beta and Delta; AstraZeneca, Comirnaty plus AstraZeneca in Alpha; Comirnaty, Moderna, Novovax in Beta; Comirnaty in Delta. (4) Conclusion: CoV-RDB analysis is an efficient, rapid, and helpful web tool for SARS-CoV-2 variant detection and susceptibility analysis.