A Multi-Input Convolutional Neural Networks Model for Earthquake Precursor Detection Based on Ionospheric Total Electron Content


Uyanık H., Şentürk E., Akpınar M. H., Özçelik S., Köküm M., Freeshah M., ...Daha Fazla

REMOTE SENSING, cilt.15, sa.24, ss.5690, 2023 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 24
  • Basım Tarihi: 2023
  • Doi Numarası: 10.3390/rs15245690
  • Dergi Adı: REMOTE SENSING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, CAB Abstracts, Compendex, INSPEC, Veterinary Science Database, Directory of Open Access Journals
  • Sayfa Sayıları: ss.5690
  • Kocaeli Üniversitesi Adresli: Evet

Özet

Earthquakes occur all around the world, causing varying degrees of damage and destruction. Earthquakes are by their very nature a sudden phenomenon and predicting them with a precise time range is difficult. Some phenomena may be indicators of physical conditions favorable for large earthquakes (e.g., the ionospheric Total Electron Content (TEC)). The TEC is an important parameter used to detect pre-earthquake changes by measuring ionospheric disturbances and space weather indices, such as the global geomagnetic index (Kp), the storm duration distribution (Dst), the sunspot number (R), the geomagnetic storm index (Ap-index), the solar wind speed (Vsw), and the solar activity index (F10.7), have also been used to detect pre-earthquake ionospheric changes. In this study, the feasibility of the 6th-day earthquake prediction by the deep neural network technique using the previous five consecutive days is investigated. For this purpose, a two-staged approach is developed. In the first stage, various preprocessing steps, namely TEC signal improvement and time-frequency representation-based TEC image construction, are performed. In the second stage, a multi-input convolutional neural network (CNN) model is designed and trained in an end-to-end fashion. This multi-input CNN model has a total of six inputs, and five of the inputs are designed as 2D and the sixth is a 1D vector. The 2D inputs to the multi-input CNN model are TEC images and the vector input is concatenated space weather indices. The network branches with the 2D inputs contain convolution, batch normalization, and Rectified Linear Unit (ReLU) activation layers, and the branch with the 1D input contains a ReLU activation layer. The ReLU activation outputs of all the branches are flattened and then concatenated. And the classification is performed via fully connected, softmax, and classification layers, respectively. In the experimental work, earthquakes with a magnitude of Mw5.0 and above that occurred in Turkey between 2012 and 2019 are used as the dataset. The TEC data were recorded by the Turkey National Permanent GNSS Network-Active (TNPGN-Active) Global Navigation Satellite System (GNSS) stations. The TEC data five days before the earthquake were marked as “precursor days” and the TEC data five days after the earthquake were marked as “normal days”. In total, 75% of the dataset is used to train the proposed method and 25% of the dataset is used for testing. The classification accuracy, sensitivity, specificity, and F1-score values are obtained for performance evaluations. The results are promising, and an 89.31% classification accuracy is obtained.