Enhanced mechanical and thermal properties of graphene nanoplatelets-reinforced polyamide11/poly(lactic acid) nanocomposites


Durmaz B. U., AYTAÇ A.

POLYMER ENGINEERING AND SCIENCE, cilt.63, sa.1, ss.105-117, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 63 Sayı: 1
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1002/pen.26189
  • Dergi Adı: POLYMER ENGINEERING AND SCIENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aerospace Database, Applied Science & Technology Source, Biotechnology Research Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.105-117
  • Anahtar Kelimeler: dynamic mechanical analysis, graphene nanoplatelets, nanocomposites, polyamide 11, poly(lactic acid) blends, thermal properties, POLYAMIDE, PERFORMANCE, COMPOSITES, MORPHOLOGY
  • Kocaeli Üniversitesi Adresli: Evet

Özet

The present paper aims to obtain a sustainable nanocomposite by using bio-based polyamide 11 and biodegradable poly (lactic acid) blend as matrix and graphene nanoplatelets (GNP) as nanofiller. GNP was incorporated in the PA11/PLA blend matrix in the ratio of 0.5-1-3-5-10 wt% through the twin-screw extruder. The crystallinity of PA11 in the blend, which was 12.9%, increased with the inclusion of GNP, and the highest crystallinity value was observed at 20% for the 1GNP sample. The crystallinity of PLA in the blend, which was 2.3%, increased to 4.6% with 5 wt% GNP addition. The inclusion of GNP to PA11/PLA improved the thermal degradation temperatures and increase the char residue. Also, increments were observed for storage modulus, loss modulus, and glass transition temperature of the matrix with the inclusion of GNP. The addition of GNP caused the tensile strength of the matrix to increase first and then decrease at higher amounts due to the agglomerations. 0.5-1 wt% GNP increased tensile strength by 10% and 5%, respectively. Increasing the amount of GNP to 10 wt% led to a sharp decrease in tensile strength by 24%. Overall, GNP is a suitable nanofiller to enhance the thermal and mechanical features of the PA11/PLA blend.