9th Machine Intelligence and Digital Interaction Conference, MIDI 2021, Virtual, Online, 9 - 10 Aralık 2021, cilt.440 LNNS, ss.34-42
© 2022, The Author(s).Sentiment analysis is one of the essential and challenging tasks in the Artificial Intelligence field due to the complexity of the languages. Models that use rule-based and machine learning-based techniques have become popular. However, existing models have been under-performing in classifying irony, sarcasm, and subjectivity in the text. In this paper, we aim to deploy and evaluate the performances of the State-of-the-Art machine learning sentiment analysis techniques on a public IMDB dataset. The dataset includes many samples of irony and sarcasm. Long-short term memory (LSTM), bag of tricks (BoT), convolutional neural networks (CNN), and transformer-based models are developed and evaluated. In addition, we have examined the effect of hyper-parameters on the accuracy of the models.