Performance Evaluation of Support Vector Machine and Convolutional Neural Network Algorithms in Real-Time Vehicle Type Classification


Sentas A., Tashiev I., Kucukayvaz F., KUL S., EKEN S., SAYAR A., ...Daha Fazla

6th International Conference on Emerging Internet, Data and Web Technologies (EIDWT), Tirana, Arnavutluk, 15 - 17 Mart 2018, cilt.17, ss.934-943 identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası: 17
  • Doi Numarası: 10.1007/978-3-319-75928-9_86
  • Basıldığı Şehir: Tirana
  • Basıldığı Ülke: Arnavutluk
  • Sayfa Sayıları: ss.934-943
  • Anahtar Kelimeler: Vehicle detection and classification, Video processing, Tiny-YOLO, Intelligent traffic management systems
  • Kocaeli Üniversitesi Adresli: Evet

Özet

Intelligent traffic management systems needs to obtain information about traffic with different sensors to control the traffic flow properly. Traffic surveillance videos are very actively used for this purpose. In this paper, we firstly create a vehicle dataset from an uncalibrated camera. Then, we test Tiny-YOLO real-time object detection and classification system and SVM classifier on our dataset and well-known public BIT-Vehicle dataset in terms of recall, precision, and intersection over union performance metrics. Experimental results show that two methods can be used to classify real time streaming traffic video data.