FABER POLYNOMIAL COEFFICIENT ESTIMATES FOR ANALYTIC BI-UNIVALENT FUNCTIONS ASSOCIATED WITH GREGORY COEFFICIENTS


BULUT S.

KOREAN JOURNAL OF MATHEMATICS, sa.2, ss.285-295, 2024 (ESCI) identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.11568/kjm.2024.32.2.285
  • Dergi Adı: KOREAN JOURNAL OF MATHEMATICS
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI)
  • Sayfa Sayıları: ss.285-295
  • Kocaeli Üniversitesi Adresli: Evet

Özet

In this work, we consider the function Psi( z ) = ln (1 + z )=1+ Sigma(infinity) (n =1) G( n) z( n) whose coefficients G n are the Gregory coefficients related to Stirling numbers of the first kind and introduce a new subclass g( Sigma)( lambda,mu) (Psi) of analytic bi-univalent functions subordinate to the function Psi. For functions belong to this class, we investigate the estimates for the general Taylor -Maclaurin coefficients by using the Faber polynomial expansions. In certain cases, our estimates improve some of those existing coefficient bounds.