New results on Hermite-Hadamard type inequalities via Caputo-Fabrizio fractional integral for s-convex function


Nasir J., Qaisar S., Qayyum A., Budak H.

FILOMAT, cilt.37, sa.15, ss.4943-4957, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 37 Sayı: 15
  • Basım Tarihi: 2023
  • Doi Numarası: 10.2298/fil2315943n
  • Dergi Adı: FILOMAT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.4943-4957
  • Kocaeli Üniversitesi Adresli: Hayır

Özet

The purpose of this article is to construct on Hermite-Hadamard type inequalities via Caputo-Fabrizio fractional integral for s-convex function. The results are applied to fractional variations of Hermite- Hadamard type inequalities for differentiable mapping phi with s-convex absolute value derivatives. The findings also provide a new lemma for phi ' and new limits via Caputo-Fabrizio fractional operator by using the well-known Ho center dot lder's integral inequalities. Moreover some new bounds for applications of matrix and special means of different positive real numbers are also discussed.