Generalized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions


Creative Commons License

Vivas-Cortez M. J. J., Kara H., Budak H., Ali M. A., Chasreechai S.

OPEN MATHEMATICS, sa.1, ss.1887-1903, 2022 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1515/math-2022-0477
  • Dergi Adı: OPEN MATHEMATICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Scopus, MathSciNet, zbMATH, Directory of Open Access Journals
  • Sayfa Sayıları: ss.1887-1903
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Kocaeli Üniversitesi Adresli: Hayır

Özet

In this article, we introduce the notions of generalized fractional integrals for the interval-valued functions (IVFs) of two variables. We establish Hermite-Hadamard (H-H) type inequalities and some related inequalities for co-ordinated convex IVFs by using the newly defined integrals. The fundamental benefit of these inequalities is that these can be turned into classical H-H inequalities and Riemann-Liouville fractional H-H inequalities, and new k k -Riemann-Liouville fractional H-H inequalities can be obtained for co-ordinated convex IVFs without having to prove each one separately.