Systematic study of the alpha-optical potential via elastic scattering near the Z=50 region for p-process nuclei


Creative Commons License

Palumbo A., Tan W. P., Goerres J., Best A., Couder M., Crowter R., ...More

PHYSICAL REVIEW C, vol.85, no.3, 2012 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 85 Issue: 3
  • Publication Date: 2012
  • Doi Number: 10.1103/physrevc.85.035808
  • Journal Name: PHYSICAL REVIEW C
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED)
  • Kocaeli University Affiliated: Yes

Abstract

Production of proton-rich nuclei beyond iron in stars proceeds via the p process, i.e., a sequence of photodisintegration reactions, (gamma,n), (gamma,p), and (gamma,alpha) on heavy nuclei at temperatures of 2-3 x 10(9) K. The involved reaction rates are typically calculated with the statistical Hauser-Feshbach (HF) model. However, the HF model performs poorly in calculating the critical (gamma,alpha) rates due to the uncertainty of the alpha optical potentials applied. To test the reliability of the HF calculations and provide a systematic understanding of the alpha optical potential at energies of astrophysical interest, a series of precision alpha scattering measurements were carried out at the Notre Dame FN Tandem Accelerator. Specifically, Cd-106, Sn-118, and Te-120,Te-124,Te-126,Te-128,Te-130 were studied at energies both below and above the Coulomb barrier. A new parametrization of the a optical potential was derived of the elastic scattering cross section data. The derived potential was applied for calculating the alpha-induced reaction cross sections on these nuclei using the HF approach. The results were compared to the corresponding experimental values obtained from previous activation measurements on Cd, Sn, and Te isotopes.