On three intelligent systems: dynamic neural, fuzzy, and wavelet networks for training trajectory

Becerikli Y.

NEURAL COMPUTING & APPLICATIONS, cilt.13, ss.339-351, 2004 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 13 Konu: 4
  • Basım Tarihi: 2004
  • Doi Numarası: 10.1007/s00521-004-0429-9
  • Sayfa Sayıları: ss.339-351


Intelligent systems cover a wide range of technologies related to hard sciences, such as modeling and control theory, and soft sciences, such as the artificial intelligence (AI). Intelligent systems, including neural networks (NNs), fuzzy logic (FL), and wavelet techniques, utilize the concepts of biological systems and human cognitive capabilities. These three systems have been recognized as a robust and attractive alternative to the some of the classical modeling and control methods. The application of classical NNs, FL, and wavelet technology to dynamic system modeling and control has been constrained by the non-dynamic nature of their popular architectures. The major drawbacks of these architectures are the curse of dimensionality, such as the requirement of too many parameters in NNs, the use of large rule bases in FL, the large number of wavelets, and the long training times, etc. These problems can be overcome with dynamic network structures, referred to as dynamic neural networks (DNNs), dynamic fuzzy networks (DFNs), and dynamic wavelet networks (DWNs), which have unconstrained connectivity and dynamic neural, fuzzy, and wavelet processing units, called "neurons", "feurons", and "wavelons", respectively. The structure of dynamic networks are based on Hopfield networks. Here, we present a comparative study of DNNs, DFNs, and DWNs for non-linear dynamical system modeling. All three dynamic networks have a lag dynamic, an activation function, and interconnection weights. The network weights are adjusted using fast training (optimization) algorithms (quasi-Newton methods). Also, it has been shown that all dynamic networks can be effectively used in non-linear system modeling, and that DWNs result in the best capacity. But all networks have non-linearity properties in non-linear systems. In this study, all dynamic networks are considered as a non-linear optimization with dynamic equality constraints for non-linear system modeling. They encapsulate and generalize the target trajectories. The adjoint theory, whose computational complexity is significantly less than the direct method, has been used in the training of the networks. The updating of weights (identification of network parameters) is based on Broyden-Fletcher-Goldfarb-Shanno method. First, phase portrait examples are given. From this, it has been shown that they have oscillatory and chaotic properties. A dynamical system with discrete events is modeled using the above network structure. There is a localization property at discrete event instants for time and frequency in this example.