Hyperspectral and multispectral image fusion based on spectral decomposition and neighborhood pixel relation Spektral ayrıştırma ve komşu piksel ilişkisi temelli hiperspektral ve multispektral görüntülerin kaynaştırılması


Creative Commons License

Çeşmeci D., URHAN O., Güllü M. K.

Journal of the Faculty of Engineering and Architecture of Gazi University, vol.38, no.4, pp.2385-2396, 2023 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 38 Issue: 4
  • Publication Date: 2023
  • Doi Number: 10.17341/gazimmfd.915691
  • Journal Name: Journal of the Faculty of Engineering and Architecture of Gazi University
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Art Source, Compendex, TR DİZİN (ULAKBİM)
  • Page Numbers: pp.2385-2396
  • Keywords: hyperspectral, Image fusion, multispectral, neighborhood pixel, spectral decomposition
  • Kocaeli University Affiliated: Yes

Abstract

Hyperspectral (HS) images have high spectral resolution, but their spatial resolution is low due to technological constraints. It is beneficial to have HS images that have high spatial resolution as well as high spectral resolution to increase classification accuracy or obtain more detailed content in this kind of image. Thus, HS and multispectral (MS) image fusion have become a very popular topic in recent years. In this study, spectral decomposition and neighborhood pixel relation-based hyperspectral and multispectral image fusion is proposed. Firstly, spectral decomposition is used to get endmembers and their abundance maps from the hyperspectral image. Hyperspectral endmembers are degraded to multispectral spectral resolution according to the spectral response model of the multispectral sensor. Then, abundance fractions of the endmembers and neighborhood pixels are estimated for each multispectral pixel. Finally, the abundance map of multispectral image and endmembers, and neighborhood pixels of the hyperspectral image are used to obtain an image with high spatial and spectral resolution. The proposed method is tested on real hyperspectral images and experimental results show that it gives the highest accuracy compared to studies in the literature.