New Study on the Quantum Midpoint-Type Inequalities for Twice q-Differentiable Functions via the Jensen-Mercer Inequality


Butt S. I., Umar M., Budak H.

SYMMETRY-BASEL, cilt.15, sa.5, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 5
  • Basım Tarihi: 2023
  • Doi Numarası: 10.3390/sym15051038
  • Dergi Adı: SYMMETRY-BASEL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Communication Abstracts, INSPEC, Metadex, zbMATH, Directory of Open Access Journals, Civil Engineering Abstracts
  • Kocaeli Üniversitesi Adresli: Hayır

Özet

The objective of this study is to identify novel quantum midpoint-type inequalities for twice q-differentiable functions by utilizing Mercer's approach. We introduce a new auxiliary variant of the quantum Mercer midpoint-type identity related to twice q-differentiable functions. By applying the theory of convex functions to this identity, we introduce new bounds using well-known inequalities, such as H"older's inequality and power-mean inequality. We provide explicit examples along with graphical demonstrations. The findings of this study explain previous studies on midpoint-type inequalities. Analytic inequalities of this type, as well as related strategies, have applications in various fields where symmetry plays an important role.