JOURNAL OF ENVIRONMENTAL MANAGEMENT, cilt.348, 2023 (SCI-Expanded)
Although the management of sewage sludge is an important and challenging task of wastewater treatment, there is a scarcity of studies on the prediction of waste sludge. To overcome this deficiency, the present work aims to develop an appropriate model providing accurate and fast prediction of sewage sludge. With this aim, different machine learning (ML) algorithms were tested by data obtained from a real advanced biological wastewater treatment plant located in Kocaeli, Turkey. In modelling studies, a data set from January 2022 to December 2022 composed of 208 daily measurements was considered. The flow rate of the plant (Q), polyelectrolyte dosage (PD) and removed amounts of total suspended solids (TSS), chemical oxygen demand (COD), biological oxygen demand (BOD), total phosphorous (TP), total nitrogen (TN) were assigned as input parameters to predict sludge production (SP). The precision of the models was evaluated in terms of Mean Square Error (MSE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and correlation coefficient (R2). Among the various tested models Kernel Ridge Regression provided the best accuracy with R2 value of 0.94 and MAE value of 3.25. Mutual information-based feature selection (MIFS) and correlation-based feature selection (CFS) algorithms were also used in the study in order to enhance the model performance. Thus, higher prediction accuracies were achieved using the selected subset of features. Furthermore, importance contribution of features were calculated and visualized by SHapley Additive exPlanations (SHAP) technique. The overall results of the work indicate the feasibility of ML models for describing the dynamic and complex nature of SP. The process operators may benefit from this modelling approach since it enables accurate and fast estimation of sewage sludge by using fewer and easily measurable parameters.