Increased expression and activity of CDC25C phosphatase and an alternatively spliced variant in prostate cancer


Ozen M., Ittmann M.

CLINICAL CANCER RESEARCH, cilt.11, sa.13, ss.4701-4706, 2005 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 11 Sayı: 13
  • Basım Tarihi: 2005
  • Doi Numarası: 10.1158/1078-0432.ccr-04-2551
  • Dergi Adı: CLINICAL CANCER RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.4701-4706
  • Kocaeli Üniversitesi Adresli: Evet

Özet

Alterations in the control of cell cycle progression have been implicated in a wide variety of malignant neoplasms, including prostate cancer. CDC25 phosphatases belong to the tyrosine phosphatase family and play a critical role in regulating cell cycle progression by dephosphorylating cyclin-dependent kinases at inhibitory residues. CDC25C plays an important role in the G(2)-M transition by activating Cdc2/Cyclin B1 complexes. To determine whether CDC25C activity is altered in prostate cancer, we have examined the expression of CDC25C and an alternatively spliced variant in human prostate cancer samples and cell lines. CDC25C protein is up-regulated in prostate cancer in comparison with normal prostate tissue and is present almost exclusively in its active dephosphorylated form. Expression of a biologically active alternatively spliced CDC25C isoform is also increased in prostate cancer and expression of alternatively spliced CDC25 C is correlated to occurrence of biochemical (prostate-specific antigen) recurrence. We have also developed a quantitative reverse transcriptase-PCR analysis of Ki-67 expression as a method of measuring proliferative activity in prostate cancer from RNA samples. Based on this analysis of Ki67 expression, some but not all of this increase in CDC25C and its alternatively spliced variants is correlated with increased proliferation in prostate cancer. This data suggests that CDC25C might play an important role in prostate cancer progression and could be used to monitor and predict the aggressiveness of this disease.