GEOCARTO INTERNATIONAL, vol.37, no.27, pp.14925-14945, 2022 (SCI-Expanded)
In order to increase the accuracy results in various remote sensing applications, some additional parameters of texture information, which can provide information about the spatial relationship of a pixel in the image with other pixels, must be obtained. In addition to standard texture information extraction approaches, there is a need for approaches that take into account the spatial relationships of pixels in a certain neighborhood. In this study, it is aimed to reveal to what extent the use of characteristic information that can determine the texture properties of the image will affect the performance of the classification of satellite images by using the spatial dependency information obtained by geostatistical methods in satellite images. The data sets were classified with the Support Vector Machines (SVM) method, and according to pixel-based classification, an increase of 10% in agricultural area data and a 3% increase in urban area image was observed.