Methanol steam reforming kinetics using a commercial CuO/ZnO/Al2O3 catalyst: Simulation of a reformer integrated with HT-PEMFC system


ÖZCAN O., AKIN A. N.

International Journal of Hydrogen Energy, 2023 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Publication Date: 2023
  • Doi Number: 10.1016/j.ijhydene.2023.01.093
  • Journal Name: International Journal of Hydrogen Energy
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Artic & Antarctic Regions, Chemical Abstracts Core, Communication Abstracts, Environment Index, INSPEC
  • Keywords: Hydrogen production, Kinetics, Methanol steam reforming, Reformer-fuel cell system analysis
  • Kocaeli University Affiliated: Yes

Abstract

© 2023 Hydrogen Energy Publications LLCThis study provides a kinetic examination of methanol steam reforming (MSR) over a Cu-based commercial catalyst (CuO/ZnO/Al2O3, Alfa Aesar) as a function of CH3OH and H2O partial pressures at 246 °C and 1 atm in a once-through flow reactor. A power rate law was used to best describe the experimental rate data by linear and non-linear regressions at the operating conditions where transport bottlenecks were eliminated. Comparison of the rate parameters indicated that a strong correlation was suggested by non-linear regression giving reaction orders of 0.29 for methanol and 0.09 for water along with a frequency factor of 53.48 (molCH3OH s−1 gcatalyst−1 kPa−0.38) and an activation energy of 65.59 kJ mol−1. A simulation study of the rate equation to analyze an integrated system of a reformer and an HT-PEMFC was also conducted. The results demonstrate that the system has the potential to produce 15 W power output.