DETECTION AND SEGMENTATION OF BREAST TUMOR LESIONS IN ULTRASOUND IMAGES WITH MASK R-CNN


Aydın Böyük A., Böyük M. , Bolat E.

EJONS INTERNATIONAL JOURNAL ON MATHEMATICS, ENGINEERING & NATURAL SCIENCES, vol.18, pp.18-29, 2021 (Refereed Journals of Other Institutions)

  • Publication Type: Article / Article
  • Volume: 18
  • Publication Date: 2021
  • Title of Journal : EJONS INTERNATIONAL JOURNAL ON MATHEMATICS, ENGINEERING & NATURAL SCIENCES
  • Page Numbers: pp.18-29

Abstract

Dünya çapında meme kanseri, kadınlarda kanserden ölüm oranlarının en yüksek olduğu kanser türü olarak görünmektedir. Bilindiği üzere bu türden ölüm oranlarını azaltmanın temel yolu erken ve doğru teşhisten geçmektedir. Son yıllarda araştırmacılar, tanı süresini kısaltmak için evrişimli sinir ağları tabanlı bilgisayarlı görme tekniklerine odaklanmışlardır. Sinir ağı modellerinin yüzlerce hatta binlerce farklı meme ultrasonu görüntüsü ile eğitilmesiyle tümörlü bölgenin tespitini hedeflemişlerdir. Bu çalışmadaki temel amaçta benzer şekilde memede oluşan iyi ya da kötü huylu tümörlerin ultrason görüntüleri kullanılarak lezyonun otomatik olarak tespiti, sınıflandırılması (iyi-kötü huylu) ve bölütlemesi için bir model oluşturmaktır. Bu model hastanelerin PACT sistemiyle entegre edilebilir ve önümüzdeki yıllarda hekimlere tanı koymaları için destek vermesi beklenmektedir. İyi-kötü huylu lezyon ayrımı maske bölgeleri kullanılarak Mask R-CNN denilen bir derin öğrenme modeli ile gerçekleştirilmiştir. Ayrıca 4 farklı özellik çıkarıcı omurga (ResNet50 FPN-ResNet50 C4-ResNet101 FPN-ResNet101 C4) kullanılmıştır. Benign sınıfı için, Resnet 50 C4 modeli AP açısından en yüksek algılamaya ulaşmıştır. Resnet 101 C4 modeli, malign sınıf için en yüksek performansı elde etmiştir.