Generalized fractional midpoint type inequalities for co-ordinated convex functions


Hezenci F., Budak H., Kara H., Sarikaya M. Z.

FILOMAT, cilt.37, sa.13, ss.4103-4124, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 37 Sayı: 13
  • Basım Tarihi: 2023
  • Doi Numarası: 10.2298/fil2313103h
  • Dergi Adı: FILOMAT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.4103-4124
  • Kocaeli Üniversitesi Adresli: Hayır

Özet

In this research paper, we investigate generalized fractional integrals to obtain midpoint type inequalities for the co-ordinated convex functions. First of all, we establish an identity for twice partially dif-ferentiable mappings. By utilizing this equality, some midpoint type inequalities via generalized fractional integrals are proved. We also show that the main results reduce some midpoint inequalities given in earlier works for Riemann integrals and Riemann-Liouville fractional integrals. Finally, some new inequalities for k-Riemann-Liouville fractional integrals are presented as special cases of our results.