Hermite-Hadamard-Type Inequalities Arising from Tempered Fractional Integrals Including Twice-Differentiable Functions


Hezenci F., BUDAK H., Latif M. A.

UKRAINIAN MATHEMATICAL JOURNAL, cilt.76, sa.9, ss.1572-1590, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 76 Sayı: 9
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1007/s11253-025-02406-2
  • Dergi Adı: UKRAINIAN MATHEMATICAL JOURNAL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, MathSciNet, zbMATH
  • Sayfa Sayıları: ss.1572-1590
  • Kocaeli Üniversitesi Adresli: Hayır

Özet

We propose a new method for the investigation of integral identities according to tempered fractional operators. In addition, we prove the midpoint-type and trapezoid-type inequalities by using twice-differentiable convex functions associated with tempered fractional integral operators. We use the well-known H & ouml;lder inequality and the power-mean inequality in order to obtain inequalities of these types. The resulting Hermite-Hadamard-type inequalities are generalizations of some investigations in this field, involving Riemann-Liouville fractional integrals.