COMPUTERS & INDUSTRIAL ENGINEERING, cilt.56, sa.2, ss.538-559, 2009 (SCI-Expanded)
In recent years, one of the most important and promising research fields has been metaheuristics to find optimal or near-optimal solutions for NP-hard combinatorial optimization problems. Improving the quality of the solution or the solution time is basic research area on metaheuristics. Modifications of the existing ones or creation of hybrid approaches are the focus of these efforts. Another area of improving the solution quality of metaheuristics is finding the optimal combination of algorithm control parameters. This is usually done by design of experiments or one-at-a-time approach in genetic algorithms, simulated annealing and similar metaheuristics. We observe that, in studies which use Ant Colonies Optimization (ACO) as an optimization technique; the levels of control parameters are determined by some non-systematic initial experiments and the interactions of the parameters are not studied yet.