Osmium isotope systematics and highly siderophile element fractionation in spinel-peridotites from the Tethyan ophiolites in SW Turkey: Implications for multi-stage evolution of oceanic upper mantle


CHEMICAL GEOLOGY, cilt.294, ss.152-164, 2012 (SCI İndekslerine Giren Dergi) identifier identifier


Ophiolites exposed across the western Tauride belt in SW Turkey represent tectonically-emplaced fragments of oceanic lithosphere incorporated into continental margin following the closure of the Neotethys Ocean during the Late Cretaceous. The mantle sections of the ophiolites contain peridotites with diverse suites of geochemical signatures indicative of residual origin by melt depletion in both mid-ocean ridge (MOR) and supra-subduction zone (SSZ) settings. We examined Re and Platinum Group Element (PGE) abundances and Os-187/Os-188 systematics of peridotites in order to identify the nature of the mantle source and the processes effective during variable stage of melt extraction in these discrete tectonic settings. The MOR peridotites are marked by chondritic Os/Ir and Pt/Ir ratios and slightly supra-chondritic Pd/Ir and Rh/Ir ratios, indicating a mantle region compositionally similar to estimates for the Primitive Mantle (PM). Moderate enrichment in PPGE/IPGE ratios with respect to the PM composition in some of the samples, however, reflects compositional modification by sulfide addition in some parts of the mantle during post-melting processes. The Os-187/Os-188 isotopic compositions of the MOR peridotites range from 0.12227 to 0.12544. The sub-chondritic Os-187/Os-188 isotope ratios (gamma Os = -3.4) in the most depleted and chemically undisturbed samples are accompanied by depletion in Re/Os ratios, suggesting long-term differentiation of oceanic upper mantle by continuous melt extraction. The observed positive covariance between Re-187/Os-188 and gamma Os and higher PPGE and Re abundances than expected for low-degree melting (<9%) residues can most likely be explained by interaction of solid residues with MORB melts most probably produced by melting of relatively more radiogenic components in the mantle source. The SSZ peridotites, on the other hand, display larger variations in relative PGE and Re abundances, reflecting a more complex evolutionary history. Significantly wide range of Os isotopic ratios (0.12086 to 0.13182; gamma Os = -4.8 to + 3.8) in these high-degree melting (> 13%) residues seems to be consistent with multi-stage evolution of oceanic upper mantle and suggests that parts of the lithospheric mantle contain material that have experienced ancient melt extraction processes (similar to 1 Ga) which created time-integrated depletion in Re/Os ratios, while some other parts display evidence indicative of interaction with melts from a mantle reservoir carrying a radiogenic component, most probably created by addition of radiogenic Os-187 during fluid assisted re-melting of previously depleted mantle in a SSZ setting. (C) 2011 Elsevier B.V. All rights reserved.