FABER POLYNOMIAL COEFFICIENT ESTIMATES OF BI-UNIVALENT FUNCTIONS CONNECTED WITH THE q-CONVOLUTION


El-Deeb S. M., BULUT S.

MATHEMATICA BOHEMICA, cilt.148, ss.49-64, 2023 (ESCI) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 148
  • Basım Tarihi: 2023
  • Doi Numarası: 10.21136/mb.2022.0173-20
  • Dergi Adı: MATHEMATICA BOHEMICA
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, MathSciNet, zbMATH, Directory of Open Access Journals
  • Sayfa Sayıları: ss.49-64
  • Anahtar Kelimeler: Faber polynomial, bi-univalent function, convolution, q-derivative operator, EXPANSION METHOD, SUBCLASS, BOUNDS
  • Kocaeli Üniversitesi Adresli: Evet

Özet

We introduce a new class of bi-univalent functions defined in the open unit disc and connected with a q-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions and we obtain an estimation for the Fekete-Szego problem for this class.