Diagnostics, vol.15, no.6, 2025 (SCI-Expanded)
Background/Objectives: In recent years, molecular diagnosis has become increasingly critical in identifying human pathogens with unknown genes. Methods: An innovative approach, the fuzzy-based preference ranking organization method for enrichment evaluation (PROMETHEE) technique, one of the most effective multi-criteria decision-making (MCDM) methods, was used to evaluate criteria, including portability, generation type, max read/run, max output data/run, processing time/run, read length, accuracy, diagnostic sensitivity, test minimum loading volume, test cost/run, instrument cost, error rate, throughput capability, ability to sequence the large whole genome, small whole genome, and exome and large panel, mutation detection ability, whole-genome sequencing with single-stranded sequencing, and single-stranded sequencing accuracy, to determine the most suitable sequencing technology. Results: Based on the analysis, the Avidite Base Chemistry (ABC), Nanopore, and Illumina sequencing platforms sequentially emerged as the most favorable options based on their net flows of 0.0346, 0.0041, and 0.0003, respectively. Conclusions: Our findings provide important data to facilitate the selection of genome detection technologies. Through the use of innovative approaches, complex evaluations can be analyzed and the right choices can be made. Importantly, the technique has a degree of subjectivity, so varying conditions may lead to different findings.