ON CONFORMABLE FRACTIONAL NEWTON-TYPE INEQUALITIES


Xu H., Awan M. U., Meftah B., Jarad F., LAKHDARI A.

Fractals, cilt.33, sa.7, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 33 Sayı: 7
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1142/s0218348x25500458
  • Dergi Adı: Fractals
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Compendex, INSPEC, zbMATH, DIALNET, Civil Engineering Abstracts
  • Anahtar Kelimeler: Conformable Fractional Integral Operators, Convex Functions, Hölder Inequality, Power Mean Inequality, Simpson 3/8 Inequalities
  • Kocaeli Üniversitesi Adresli: Evet

Özet

By using a parametrized analysis, this paper presents a study that focuses on examining both the Simpson's 3/8 formula and the corrected Simpson's 3/8 formula. By utilizing a unique identity that incorporates conformable fractional integral operators, we have constructed novel conformable Newton-type inequalities for functions that possess second-order s-convex derivatives. Special cases are extensively discussed, and the accuracy of the results is validated through a numerical example with graphical representations.