Analysis for the identification of an unknown diffusion coefficient via semigroup approach


DEMİR A. , ÖZBİLGE E.

MATHEMATICAL METHODS IN THE APPLIED SCIENCES, cilt.32, sa.18, ss.2405-2415, 2009 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 32 Konu: 18
  • Basım Tarihi: 2009
  • Doi Numarası: 10.1002/mma.1141
  • Dergi Adı: MATHEMATICAL METHODS IN THE APPLIED SCIENCES
  • Sayfa Sayıları: ss.2405-2415

Özet

This paper presents a semigroup approach for the mathematical analysis of the inverse coefficient problems of identifying the unknown coefficient k(u(x)) in the inhomogenenous quasi-linear parabolic equation u(t)(x, t) = (k(u(x))u(x)(x, t))(x) + F(u) with the Dirichlet boundary conditions u(0, t)=psi(0),u(1, t)=psi(1) and source function F(u). The main purpose of this paper is to investigate the distinguishability of the input-output mappings Phi[.] : K -> C-1[0, T], psi[.]: K -> C-1[0,T] via sernigroup theory. Copyright (C) 2009 John Wiley & Sons, Ltd.