Analysis for the identification of an unknown diffusion coefficient via semigroup approach


DEMİR A., ÖZBİLGE E.

MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol.32, no.18, pp.2405-2415, 2009 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 32 Issue: 18
  • Publication Date: 2009
  • Doi Number: 10.1002/mma.1141
  • Journal Name: MATHEMATICAL METHODS IN THE APPLIED SCIENCES
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.2405-2415
  • Kocaeli University Affiliated: Yes

Abstract

This paper presents a semigroup approach for the mathematical analysis of the inverse coefficient problems of identifying the unknown coefficient k(u(x)) in the inhomogenenous quasi-linear parabolic equation u(t)(x, t) = (k(u(x))u(x)(x, t))(x) + F(u) with the Dirichlet boundary conditions u(0, t)=psi(0),u(1, t)=psi(1) and source function F(u). The main purpose of this paper is to investigate the distinguishability of the input-output mappings Phi[.] : K -> C-1[0, T], psi[.]: K -> C-1[0,T] via sernigroup theory. Copyright (C) 2009 John Wiley & Sons, Ltd.