NUMERICAL SOLUTION OF A QUASILINEAR PARABOLIC PROBLEM WITH PERIODIC BOUNDARY CONDITION


Sakinc I.

HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, cilt.39, sa.2, ss.183-189, 2010 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 39 Sayı: 2
  • Basım Tarihi: 2010
  • Dergi Adı: HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.183-189
  • Kocaeli Üniversitesi Adresli: Evet

Özet

In this paper we study the one dimensional mixed problem, with Neumann and Dirichlet type periodic boundary conditions, for the quasilinear parabolic equation partial derivative u/partial derivative t - a(2) partial derivative(2)u/partial derivative x(2) = f(t, x, u). We construct an iteration algorithm for the numerical solution of this problem. We analyze computationally convergence of the iteration algorithm, as well as on test examples. We demonstrate a numerical procedure for this problem on concrete examples, and also we obtain numerical solution by using the implicit finite difference algorithm.